

MPY-01 Pyroelectric Detector

Description

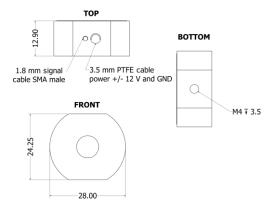
The SPY-01 is a vacuum compatible, extremely compact pyroelectric detector for sensitive radiation measurements from the UV to the Far-IR. It is equipped with an external power supply that enables continuous monitoring applications.

Physical Properties

Detection principlepyroelectricDetector materialblack coated LiTaO3
Detector material black coated LiTaO ₃
Weight80 g (including cabling)
Operating temperature -20°C to +50°C
Dimensions (HxWxD) 24.25 mm x 28.0 mm x 12.9 mm
Detector window dimensions (5.0 x 5.0) mm ²
Active detector area (2.0 x 2.0) mm ²
Vacuum compatibilityfor pressure < 10-6 mbar

Electrical Properties

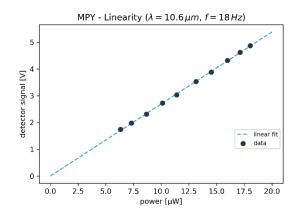
Power supply	± 12 V linear low noise power supply (Thorlabs LDS12B)
Power socket	3-pole, M8
Output socket	SMA
Output signal	analog
Output signal level	-5 V to +5 V


Measuring Properties

Responsivity	7.5 kV/W *	
Response time (0-100%)	typ. 150 ms (corresponds to thermal time constant)	
Bandwidth (-3 dB)	typ. 200 Hz	
Frequency range (-20 dB)	typ. 1 Hz to 1 kHz **	
Noise equivalent power (NEP)	1500 pW/√Hz *	
Noise density	13 μV/√Hz	
Detectivity @ 10 Hz	1.8 x 10 ⁸ cm ₁ /Hz/W *	
Detectivity @ 1 kHz	0.4 x 10 ⁸ cm√Hz/W *	
Maximum measurable power	250 μW (f = 10 Hz)	
Damage threshold (max. avg. power density)	60 mW/cm ²	
Spectral bandwidth	UV to THz (real bandwidth depends on the window used)	
KBr window	λ = 200 nm – 30 μm	
Si window	λ > 1.2 μm	
PTFE window	λ = 20 μm – 40 μm & λ > 60 μm	
HDPE window	λ > 40 μm	
 Diamond window 	λ > 225 μm	
 without window 	λ = 10 nm – 1000 μm	
Further window materials on request.		

 * Measured with broadband black body source at 150°C, central wavelength λ = 6.8 μm and KBr window

** Detector only sees signal changes – a chopper is required for CW applications!


Geometric Dimensions

Typical Performance

$10^{!}$ Responsivity (V/W) with Si window (50.0% transmission) without window (calculated) 10 10 Noise spectral density (V/ \sqrt{Hz}) 10 10 10⁹ $D^{*} (Cm/Hz/W)$ 10^{6}_{10} 103 10²

Linearity

The responsivity and D^* values are measured with a 150°C blackbody emitter with 6.8 µm peak emission and with a detector with silicon window. The values can change for other wavelengths.

Information in this document is subject to change without notice.

Frequency (Hz)